数说营销--大数据营销实战培训
【课程编号】:NX20912
数说营销--大数据营销实战培训
【课件下载】:点击下载课程纲要Word版
【所属类别】:市场营销培训
【培训课时】:2-4天,6小时/天
【课程关键字】:大数据营销培训
我要预订
咨询电话:027-5111 9925 , 027-5111 9926手机:18971071887邮箱:Service@mingketang.com
【课程目标】
本课程从实际的市场营销问题出发,构建数据分析与数据挖掘模型,以解决实际的商业问题。并对大数据分析与挖掘技术进行了全面的介绍,通过从大量的市场营销数据中分析潜在的客户特征,挖掘客户行为特点,实现精准营销,帮助市场营销团队深入理解业务运作,支持业务策略制定以及运营决策。
通过本课程的学习,达到如下目的:
1、了解大数据营销内容,掌握大数据在营销中的应用。
2、了解基本的营销理论,并学会基于营销理念来展开大数据分析。
3、熟悉数据分析/挖掘的基本过程,掌握常用的数据挖掘方法。
4、熟悉Excel数据分析工具,能够利用Excel和SPSS软件解决实际的营销问题(比如定价/因素影响/预测/客户需求/客户价值/市场细分等)。
【授课对象】
系统支撑、市场营销部、运营分析部相关技术及应用人员。
本课程由浅入深,结合原理主讲软件工具应用,不需要太深的数学知识,但希望掌握数据分析的相关人员。
【学员要求】
1、每个学员自备一台便携机(必须)。
2、便携机中事先安装好Excel 2013版本及以上。
3、便携机中事先安装好IBM SPSS Statistics v24版本及以上。
注:讲师可以提供试用版本软件及分析数据源。
【授课方式】
理论精讲 + 案例演练 + 实际业务问题分析 + Excel实践操作 + SPSS实践操作
本课程突出数据分析的实际应用,结合行业的典型应用特点,围绕实际的商业问题,进行大数据的分析与挖掘,介绍常用的模型,以及模型适用场景,通过演练操作,以达到提升学员对营销数据的分析以及对数据模型的深入理解。
【课程大纲】
第一部分:大数据实现精准营销
1、传统营销的困境与挑战
2、营销理论的变革(4P4CnPnC)
3、大数据引领传统营销
4、大数据在营销中的典型应用
市场定位与客户细分
客户需求与产品设计
精准广告与精准推荐
……
5、大数据营销的基石:用户画像
6、客户生存周期中的大数据应用
演练:如何用大数据来支撑手机精准营销项目
第二部分:大数据基础—数据思维篇
问题:大数据的核心价值是什么?大数据是怎样用于业务决策?
1、大数据时代:你缺的不是一堆方法,而是大数据思维
2、大数据的本质
数据,是对客观事物的描述和记录
大数据不在于大,而在于全
3、大数据四大核心价值
用趋势图来探索产品销量规律
从谷歌的GFT产品探索用户需求变化
从大数据炒股看大数据如何探索因素的相关性
阿里巴巴预测经济危机的到来
从美国总统竞选看大数据对选民行为进行分析
4、大数据价值落地的三个关键环节
业务数据化
数据信息化
信息策略化
案例:喜欢赚“差价”的营业员(用数据管理来识别)
第三部分:大数据精准营销—分析框架篇
1、数据分析简介
数据分析的三个阶段
分析方法的三大类别
2、数据分析的六步曲
3、步骤1:明确目的--理清思路
确定分析目的:要解决什么样的业务问题
确定分析思路:分解业务问题,构建分析框架
4、步骤2:数据收集—理清思路
明确收集数据范围
确定收集来源
确定收集方法
5、步骤3:数据预处理—寻找答案
数据质量评估
数据清洗、数据处理和变量处理
探索性分析
6、步骤4:数据分析--寻找答案
选择合适的分析方法
构建合适的分析模型
选择合适的分析工具
7、步骤5:数据展示--观点表达
选择恰当的图表
选择合适的可视化工具
8、步骤6:报表撰写--观点表达
选择报告种类
完整的报告结构
演练:如何用大数据来支撑手机精准营销项目
演练:如何构建一个良好的大数据分析框架
第四部分:用户行为分析—分析方法篇
问题:数据分析有什么方法可依?不同的方法适用解决什么样的问题?
1、大数据精准营销的前提:用户行为分析
2、数据分析方法的层次
描述性分析法(对比/分组/结构/趋势/交叉…)
相关性分析法(相关/方差/卡方…)
预测性分析法(回归/时序/决策树/神经网络…)
专题性分析法(聚类/关联/RFM模型/…)
3、统计分析基础
统计分析两要素
统计分析三步骤
4、统计分析常用指标
汇总方式:计数、求和、百分比(增跌幅)
集中程度:均值、中位数、众数
离散程度:极差、方差/标准差、IQR
分布形态:偏度、峰度
5、基本分析方法及其适用场景
对比分析(查看数据差距)
演练:寻找用户的地域分布规律
演练:寻找公司主打产品
演练:用数据来探索增量不增收困境的解决方案
案例:银行ATM柜员机现金管理分析(银行)
分组分析(查看数据分布)
案例:排班后面隐藏的猫腻
案例:通信运营商的流量套餐划分合理性的评估
演练:银行用户消费层次分析(银行)
演练:呼叫中心接听电话效率分析(呼叫中心)
演练:客服中心科学排班人数需求分析(客服中心)
演练:客户年龄分布/消费分布分析
结构分析(评估事物构成)
案例:用户市场占比结构分析
案例:物流费用占比结构分析(物流)
案例:中移动用户群动态结构分析
演练:用户结构/收入结构/产品结构的分析
趋势分析(发现事物随时间的变化规律)
案例:破解零售店销售规律
案例:手机销量的淡旺季分析
演练:发现产品销售的时间规律
交叉分析(多维数据分析)
演练:用户性别+地域分布分析
演练:不同区域的产品偏好分析
演练:不同教育水平的业务套餐偏好分析
6、综合分析方法及其适用场景
综合评价法(多维指标归一)
案例:南京丈母娘选女婿分析表格
演练:人才选拔评价分析(HR)
杜邦分析法(关键因素分析-财务数据分析)
案例:运营商市场占有率分析(通信)
案例:服务水平提升分析(呼叫中心)
演戏:提升销量的销售策略分析(零售商/电商)
漏斗分析法(关键流程环节分析-流失率与转化率分析)
案例:电商产品销售流程优化与策略分析(电商)
演练:营业厅终端销售流程分析(电信)
演练:银行业务办理流程优化分析(银行)
矩阵分析法(产品策略分析-象限图分析法)
案例:工作安排评估
案例:HR人员考核与管理
案例:波士顿产品策略分析
7、最合适的分析方法才是硬道理。
第五部分:用户行为分析—分析思路篇
问题:数据分析思路是怎样的?如何才能全面/系统地分析而不遗漏?
1、常用分析思路模型
2、用户行为分析(5W2H分析思路)
WHY:原因
WHAT:产品
WHO:客户
WHEN:时间
WHERE:区域/渠道
HOW:支付方式
HOW MUCH:价格
案例讨论:结合公司情况,搭建用户消费习惯的分析框架(5W2H)
第六部分:影响因素分析—属性筛选篇
营销问题:哪些是影响市场销量的关键因素?比如,产品在货架上的位置是否对销量有影响?价格和广告开销是如何影响销量的?
影响风险控制的关键因素有哪些?如何判断?
1、影响因素分析的常见方法
2、相关分析(衡量两数据型变量的线性相关性)
问题:这两个属性是否会相互影响?影响程度大吗?
相关分析简介
相关分析的应用场景
相关分析的种类
简单相关分析
偏相关分析
距离相关分析
相关系数的三种计算公式
Pearson相关系数
Spearman相关系数
Kendall相关系数
相关分析的假设检验
相关分析的四个基本步骤
演练:体重与腰围的关系
演练:营销费用会影响销售额吗
演练:哪些因素与汽车销量有相关性
演练:话费与网龄的相关分析
偏相关分析
偏相关原理:排除不可控因素后的两变量的相关性
偏相关系数的计算公式
偏相关分析的适用场景
距离相关分析
3、方差分析(衡量类别变量与数值变量间的相关性)
问题:哪些才是影响销量的关键因素?
方差分析的应用场景
方差分析的三个种类
单因素方差分析
多因素方差分析
协方差分析
方差分析的原理
方差分析的四个步骤
解读方差分析结果的两个要点
演练:终端摆放位置与终端销量有关吗
演练:开通月数对客户流失的影响分析
演练:客户学历对消费水平的影响分析
演练:广告和价格是影响终端销量的关键因素吗
演练:营业员的性别、技能级别对产品销量有影响吗
演练:寻找影响产品销量的关键因素
多因素方差分析原理
多因素方差分析的作用
多因素方差结果的解读
演练:广告形式、地区对销量的影响因素分析(多因素)
协方差分析原理
协方差分析的适用场景
演练:饲料对生猪体重的影响分析(协方差分析)
4、列联分析/卡方检验(两类别变量的相关性分析)
交叉表与列联表
卡方检验的原理
卡方检验的几个计算公式
列联表分析的适用场景
案例:套餐类型对客户流失的影响分析
案例:学历对业务套餐偏好的影响分析
案例:行业/规模对风控的影响分析
5、相关性分析方法总结
第七部分:产品销量预测—回归预测篇
营销问题:如何预测未来的产品销量?如果产品跟随季节性变动,该如何预测?新产品上市,如果评估销量上限及销售增速?
1、销量预测与市场预测模型介绍
时序预测
回归模型
季节性预测(相加/相乘模型)
产品预测(珀尔曲线/龚铂兹曲线)
2、回归分析/回归预测
问题:如何预测未来的销售量(定量分析)?
回归分析简介
回归分析的种类(一元/多元、线性/曲线)
得到回归方程的常用工具
散点图+趋势线
线性回归工具
规划求解工具
演练:散点图找营销费用与销售额的关系(一元回归)
线性回归分析的五个步骤
演练:营销费用、办公费用与销售额的关系(线性回归)
解读线性回归分析结果的技巧
定性描述:正相关/负相关
定量描述:自变量变化导致因变量的变化程度
回归预测模型质量评估
评估指标:判定系数R^2、标准误差
如何选择最佳回归模型
演练:如何选择最佳的回归预测模型(一元曲线回归)
预测值准确性评估
MAD、MSE/RMSE、MAPE等
带分类变量的回归预测
演练:汽车季度销量预测
演练:工龄、性别与终端销量的关系
演练:如何评估销售目标与资源配置(营业厅)
3、回归分析的基本原理
4、模型优化思路:寻找最佳回归拟合线
如何处理预测离群值(剔除离群值)
如何剔除不显著因素(剔除不显著因素)
如何进行非线性关系检验(增加非线性自变量)
如何进行相互作用检验(增加相互作用自变量)
如何进行多重共线性检验(剔除共线性自变量)
如何检验误差项(修改因变量)
如何判断模型过拟合(模型过拟合判断)
演练:模型优化案例
5、规划求解工具简介(自定义回归模型的工具)
6、自定义模型(如何利用规划求解进行自定义模型)
案例:如何对餐厅客流量进行建模及模型优化
7、好模型都是优化出来的
第八部分:产品销量预测—时序预测篇
1、时间序列简介
回归模型的缺点
2、时序预测常用模型
3、评估预测值的准确度指标
平均绝对误差MAD
均方差MSE/RMSE
平均误差率MAPE
4、移动平均(MA)
应用场景及原理
移动平均种类
一次移动平均
二次移动平均
加权移动平均
移动平均比率法
移动平均关键问题
期数N的最佳选择方法
最优权重系数的选取方法
演练:平板电脑销量预测及评估
演练:快销产品季节销量预测及评估
5、指数平滑(ES)
应用场景及原理
最优平滑系数的选取原则
指数平滑种类
一次指数平滑
二次指数平滑(Brown线性、Holt线性、Holt指数、阻尼线性、阻尼指数)
三次指数平滑
演练:煤炭产量预测
演练:航空旅客量预测及评估
6、温特斯季节预测模型
适用场景及原理
Holt-Winters加法模型
Holt-Winters乘法模型
演练:汽车销量预测及评估
7、回归季节预测模型
季节性回归模型的参数
常用季节性预测模型(相加、相乘)
案例:美国航空旅客里程的季节性趋势分析
案例:产品销售季节性趋势预测分析
8、ARIMA模型
适用场景及原理
ARIMA操作
演练:上海证券交易所综合指数收益率序列分析
演练:服装销售数据季节性趋势预测分析
9、新产品销量预测
新产品累计销量的S曲线
如何评估销量增长的拐点
珀尔曲线与龚铂兹曲线
案例:如何预测产品的销售增长拐点,以及销量上限
演练:预测IPad产品的销量
第九部分:客户行为预测—分类预测篇
问题:如何评估客户购买产品的可能性?如何预测客户的购买行为?如何提取某类客户的典型特征?如何向客户精准推荐产品或业务?
1、分类模型概述
2、常见分类预测模型
3、逻辑回归(LR)
逻辑回归模型原理及适用场景
逻辑回归的种类
二项逻辑回归
多项逻辑回归
如何解读逻辑回归方程
带分类自变量的逻辑回归分析
多元逻辑回归
案例:如何评估用户是否会购买某产品(二元逻辑回归)
案例:多品牌选择模型分析(多元逻辑回归)
4、分类决策树(DT)
问题:如何预测客户行为?如何识别潜在客户?
风控:如何识别欠贷者的特征,以及预测欠贷概率?
客户保有:如何识别流失客户特征,以及预测客户流失概率?
决策树分类简介
案例:美国零售商(Target)如何预测少女怀孕
演练:识别银行欠货风险,提取欠贷者的特征
构建决策树的三个关键问题
如何选择最佳属性来构建节点
如何分裂变量
修剪决策树
如何评估分类性能?如何选择最优分类模型?
案例:商场酸奶购买用户特征提取
案例:客户流失预警与客户挽留
案例:识别拖欠银行货款者的特征,避免不良货款
案例:识别电信诈骗者嘴脸,让通信更安全
5、人工神经网络(ANN)
神经网络概述
神经网络基本原理
神经网络的结构
神经网络的建立步骤
神经网络的关键问题
BP反向传播网络(MLP)
径向基网络(RBF)
案例:评估银行用户拖欠货款的概率
第十部分:市场细分模型
问题:我们的客户有几类?各类特征是什么?如何实现客户细分,开发符合细分市场的新产品?如何提取客户特征,从而对产品进行市场定位?
1、市场细分的常用方法
有指导细分
无指导细分
2、聚类分析
如何更好的了解客户群体和市场细分?
如何识别客户群体特征?
如何确定客户要分成多少适当的类别?
聚类方法原理介绍
聚类方法作用及其适用场景
聚类分析的种类
K均值聚类(快速聚类)
案例:移动三大品牌细分市场合适吗?
演练:宝洁公司如何选择新产品试销区域?
演练:如何评选优秀员工?
演练:中国各省份发达程度分析,让数据自动聚类
层次聚类(系统聚类):发现多个类别
R型聚类与Q型聚类的区别
案例:中移动如何实现客户细分及营销策略
演练:中国省市经济发展情况分析(Q型聚类)
演练:裁判评分的标准衡量,避免“黑哨”(R型聚类)
两步聚类
3、客户细分与PCA分析法
PCA主成分分析的原理
PCA分析法的适用场景
演练:利用PCA对汽车客户群进行细分
演练:如何针对汽车客户群设计汽车
第十一部分:客户价值分析
营销问题:如何评估客户的价值?不同的价值客户有何区别对待?
1、如何评价客户生命周期的价值
贴现率与留存率
评估客户的真实价值
使用双向表衡量属性敏感度
变化的边际利润
案例:评估营销行为的合理性
2、RFM模型(客户价值评估)
RFM模型,更深入了解你的客户价值
RFM模型与市场策略
RFM模型与活跃度分析
案例:客户价值评估与促销名单
案例:重购用户特征分析
第十二部分:产品推荐模型
问题:购买A产品的顾客还常常要购买其他什么产品?应该给客户推荐什么产品最有可能被接受?
1、常用产品推荐模型
2、关联分析
如何制定套餐,实现交叉/捆绑销售
案例:啤酒与尿布、飓风与蛋挞
关联分析模型原理(Association)
关联规则的两个关键参数
支持度
置信度
关联分析的适用场景
案例:购物篮分析与产品捆绑销售/布局优化
案例:理财产品的交叉销售与产品推荐
第十三部分:产品定价策略及最优定价
营销问题:产品如何实现最估定价?套餐价格如何确定?采用哪些定价策略可达到利润最大化?
1、常见的定价方法
2、产品定价的理论依据
需求曲线与利润最大化
如何求解最优定价
案例:产品最优定价求解
3、如何评估需求曲线
价格弹性
曲线方程(线性、乘幂)
4、如何做产品组合定价
5、如何做产品捆绑/套餐定价
最大收益定价(演进规划求解)
避免价格反转的套餐定价
案例:电信公司的宽带、IPTV、移动电话套餐定价
6、非线性定价原理
要理解支付意愿曲线
支付意愿曲线与需求曲线的异同
案例:双重收费如何定价(如会费+按次计费)
7、阶梯定价策略
案例:电力公司如何做阶梯定价
8、数量折扣定价策略
案例:如何通过折扣来实现薄利多销
9、定价策略的评估与选择
案例:零售公司如何选择最优定价策略
10、航空公司的收益管理
收益管理介绍
如何确定机票预订限制
如何确定机票超售数量
如何评估模型的收益
案例:FBN航空公司如何实现收益管理(预订/超售)
第十四部分:实战篇(电信业客户流失分析模型)
1、电信业客户流失预警与客户挽留模型
2、银行欠贷风险预测模型
结束:课程总结与问题答疑。
傅老师
华为系大数据专家
计算机软件与理论硕士研究生(研究方向:数据挖掘、搜索引擎)。在华为工作十年,五项国家专利,在华为工作期间获得华为数项奖项,曾在英国、日本、荷兰和比利时等海外市场做项目,对大数据有深入的研究。
傅老师专注于大数据分析与挖掘、机器学习等应用技术,以及大数据系统部署解决方案。旨在将大数据的数据分析、数据挖掘、数据建模应用于行业及商业领域,解决行业实际的问题。
1、让决策更科学:将大数据应用于运营决策,用大数据探索领域发展规律和行业发展趋势,有效分析用户需求,并预测用户行为,最终实现市场变化预测,提升企业科学决策能力。
2、让管理更高效:将大数据应用于企业管理,用大数据呈现企业整体运营情况,诊断企业管理问题和风险,全面理解组织、产品、人员、营销、财务等要素间的相关性,实现企业资源的最优化配置,提升企业管理效率。
3、让营销更精准:将大数据应用于市场营销,解决营销中的用户群细分和品牌定位,客户价值评估,产品设计优化,产品最优定价等实际问题,实现精准营销和精准推荐,以最小的营销成本实现最大化的营销效果。
傅老师目前致力于将大数据技术应用于通信、金融、航空、电商、互联网、政府等领域。傅老师的课程最大特色:实战性强!“围绕业务问题+搭建分析框架+运用分析方法+建立分析模型+熟悉分析工具+形成业务策略”。以商业问题为起点,基于实际的业务应用场景(明确目的),搭建全面系统的业务框架和分析维度(分析思路),选择最合适的方法(分析方法),深入浅出的理论讲解(分析模型),使用简单实用的工具操作(分析工具),对分析结果进行有效的解读(数据可视化),最终形成具体的业务建议,实现业务分析/数据分析的闭环。
应用类:
《大数据分析与数据挖掘综合能力提升实战》
《“数”说营销----大数据营销实战与沙盘》
《市场营销大数据分析实战培训》
《大数据建模与模型优化实战培训》
《大数据分析与挖掘之SPSS工具入门与提高》
《金融行业风险预测模型实战培训》
理论/认知/战略类:
《大数据产业现状及应用创新》
《大数据思维与应用创新》
《大数据时代的精准营销》
技术类:
《Hadoop大数据解决方案开发技术基础培训》
《Python开发基础实战》
《大数据分析与挖掘之Python开发实战》
《Python机器学习算法原理及优化实现》
服务客户:
傅老师曾提供过培训咨询服务的客户遍及通信、金融、交通、制造、政府等行业,包括华为、富士康、平安集团、中国银行、招商银行、光大银行、中信银行、交通银行、广电银通、西部航空、海南航空、中国移动、中国联通、中国电信、西部航空、安能物流、广州地铁、富维江森、东风日产、神南矿业、公交集团、广州税务、良品铺子等单位和公司。
金融行业培训客户:
中国银行:《大数据变革与商业模式创新》《大数据时代的精准营销》
广发银行:《大数据下的精准营销实战》四期
中信银行:《大数据分析与挖掘综合能力提升实战》叁期
交通银行:《大数据时代的精准营销》
安信证券:《大数据时代下的金融发展》
平安集团:《大数据思维与应用创新》
平安产险:《大数据分析综合能力提升》
平安寿险:《大数据分析与应用实战》
平安银行:《大数据思维与应用创新》
农业银行:《Python大数据分析与挖掘》叁期
建设银行:《大数据思维与应用创新》两期
光大银行:《大数据分析与数据挖掘应用实战》四期
招商银行:《“数”说营销----大数据营销实战与沙盘》四期
杭州银货通科技:《大数据产业发展及应用创新》
广电银通:《大数据综合能力提升》
平安普惠金融:《Hadoop解决方案技术培训》
浦发银行:《大数据精准营销》
金融壹帐通:《大数据分析与挖掘综合能力提升实战》
中金所:《大数据思维与应用创新》
……
通信行业培训客户:
联通研究院:《大数据预测建模优化》
广州电信:《大数据时代的精准营销》两期
北京电信:《大数据分析综合能力提升》
香港电信:《大数据精准营销实战》
上海电信:《渠道大数据分析与挖掘思路及方法》两期
河北电信:《数据化运营下的大数据分析综合能力提升实战》
南京电信:《大数据视图支撑精准化营销》
佛山电信:《数据挖掘技术及其应用培训》
泉州电信:《大数据挖掘、信息分析及应用培训》
湖北联通:《大数据分析与商业智能》
广东联通:《数据分析与数据挖掘实战培训》两期
江苏联通:《大数据分析综合能力提升》
吉林联通:《大数据分析综合能力提升-中级》
乌鲁木齐联通:《大数据分析综合能力提升》
上海移动:《大数据分析与挖掘、建模及优化》叁期
浙江移动:《大数据分析与数据挖掘应用实战》
江苏移动:《大数据精准营销技能提升实战》
深圳移动:《大数据分析综合能力提升》
广西移动:《大数据发展趋势及在公司营销领域的应用》
辽宁移动2期:《数据分析方法与经营分析技巧》
泉州移动3期:《数说营销—市场营销数据分析与挖掘应用》
德阳移动2期:《大数据挖掘与建模优化实战培训》
浙江移动:《大数据产品营销能力提升》
四川移动:《大数据分析与挖掘综合能力提升》
吉林移动:《数据分析与数据挖掘培训》;
贵州移动:《“数”说营销----大数据营销实战与沙盘》
海南移动:《基于大数据运营的用户行为分析与精准定位》
山东移动:《大数据分析综合能力提升》
深圳移动:《大数据在行业内外的应用》
中国移动终端公司:《大数据分析综合能力提升培训》
中山移动:《“数”说营销----大数据营销实战与沙盘》
东莞移动:《“数”说营销----大数据营销实战与沙盘》
成都移动:《数字化运营下的数据分析与数据挖掘》
眉山移动2期:《大数据分析综合能力提升》
云浮移动:《大数据挖掘和信息提炼专项培训》
阳江移动:《小数据·大运营--运营数据的分析与挖掘》
德阳移动:《电信运营商市场营销数据挖掘应用典型案例》
陕西在线:《“数”说营销----大数据营销实战与沙盘》
四川在线:《“数”说营销----大数据营销实战与沙盘》
大连移动:《“数”说营销----大数据营销实战与沙盘》
内蒙古移动:《大数据分析与Hadoop大数据解决方案》
贵州中移通信:《SPSS数据分析与数据挖掘应用实战》
华为技术:《话务量预测与排班管理》
……
能源汽车交通行业培训客户:
一汽解放锡柴:《大数据思维与应用创新》
广东邮政:《大数据分析综合能力提升实战》
深圳水务:《大数据思维与应用创新》
宁夏国电:《大数据思维与应用》两期
柳州上汽五菱:《大数据下的精准营销实战》
东风商用:《数说营销实战》
东风日产:《大数据分析与数据挖掘应用实战》两期
富维江森(汽车):《数字化运营下的数据分析与数据挖掘应用培训》
广州地铁:《大数据分析与数据挖掘培训》两期
广州地铁:《数据分析与数据建模实战》两期
西部航空:《数字化运营下的数据分析与数据挖掘应用培训》
海南航空:《利用大数据营销提升航线收益》
南方航空:《大数据精准营销实战》两期
北京机场贵宾公司:《市场营销数据的分析》
深圳公交集团:《大数据与智慧交通》
延长壳牌:《大数据分析与挖掘综合能力提升》
神南矿业:《大数据产业发展与应用创新》
宝鸡国电:《大数据分析与挖掘》两期
顺丰快递:《大数据分析综合能力提升实战》
……
其它行业培训客户:
岭南集团:《大数据时代下的精准营销》
ABB:《大数据分析实战培训》
顶新国际:《大数据思维与应用创新》
索菲亚:《大数据分析实战培训》
玫琳凯:《大数据思维与应用》叁期
西部数据:《大数据分析综合能力提升》
无限极:《大数据分析综合能力提升》两期
雅图仕:《大数据分析综合能力提升》
施耐德:《大数据分析综合能力提升》叁期
广州税务:《大数据分析与挖掘实战》叁期
YKK吉田拉链:《大数据分析综合能力提升培训》
富士康:《数据分析综合能力提升培训》
贵州中烟:《互联网+时代的大数据思维》
深圳欣盛商:《电商大数据分析》
安能物流:《大数据挖掘分析及应用实战》
良品铺子:《大数据分析综合能力提升》两期
新时代集团:《问题的挖掘、分析—数据分析技巧》两期培训
挑战牧业:《大数据分析综合能力提升》
易鑫集团:《大数据分析综合能力提升》
赣州监狱:《大数据时代的营销》共三期培训
贺州学院:《大数据时代的人才培养》
……
【学员评价】
傅老师是我目前听过的很少忽悠而多干货的老师,能够将理论讲得深入浅出,将案例讲深讲透,将实战讲得易理解易操作。在课堂中,他能把枯燥的数据说得有生命,在课堂上,他能对学员关注和付出。我不是对数据很喜欢的人,但仍然在课堂中能够感觉到数据的生命力。五天的课让我进入到数据构成的多彩、多维的世界,值得!
——学员分享
某金融行业---《大数据变革与商业模式创新》
傅老师运用全面翔实的案例和不拘一格的语言,全方位剖析大数据发展以来在工具、思维和文化上带来的变革,生动阐述数据分析过程六部曲、数据战略七大思维等经典概述,立体呈现大数据时代企业所面临的机遇与挑战。结合当前关注焦点和时代热点话题,傅老师现场分享了第一代传统营销、第二代互联网营销、第三代大数据营销的进阶升级和精准营销实战应用。在为学员呈现一场思维见识领域盛宴的同时,傅老师还与学员进行了积极互动和现场答疑,在相互交流中启迪智慧、开拓思维,在思想碰撞中点燃大数据时代下的创新引擎,为全行在未来发展中进一步把握经济大势、开展前瞻预判、实施精准决策提供了重要思想指引。
吉林某企业——《数据分析与数据挖掘应用培训》 学员:张经理
五天的培训,让我对数据分析与数据挖掘有了进一步的了解,也学到了技术。以前参加过培训,两天的培训我都觉得有时很难,而这次连续五天的培训,我听课过程当中既然感觉到时间过得很快。
贵州某运营商——《“数”说营销----大数据营销实战》 学员:刘经理
傅老师的课程,开拓了我营销的思维,大数据营销,重在利用数据为营销服务。用户细分、用户特征提取、营销费用预算、客户流失预警,原来可以这样利用大数据,以后不再需要“拍脑袋”了,呵呵。
辽宁某运营商——《数据分析与经营分析实战培训》学员:于经理
傅老师的课程全程高能,信息量巨大,我们已经建议公司安排后续高级课程,期待再次学习,点赞!
我要预订
咨询电话:027-5111 9925 , 027-5111 9926手机:18971071887邮箱:Service@mingketang.com
企业管理培训分类导航
企业培训公开课日历
2025年
2024年